Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector.more » « lessFree, publicly-accessible full text available April 1, 2026
-
A<sc>bstract</sc> A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016–2018, corresponding to an integrated luminosity of 138 fb−1. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74–0.29 fb and 4.94–0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5–0.35 fb and 8.23–0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
